(LeetCodeHot100)234. 回文链表——palindrome-linked-list

234. 回文链表——palindrome-linked-list

给你一个单链表的头节点 head ,请你判断该链表是否为回文链表。如果是,返回 true ;否则,返回 false

示例 1:

img

1
2
输入:head = [1,2,2,1]
输出:true

示例 2:

img

1
2
输入:head = [1,2]
输出:false

提示:

  • 链表中节点数目在范围[1, 105]
  • 0 <= Node.val <= 9

我的正确答案

快慢指针找中点 + 栈存前半部分

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
class Solution {
public boolean isPalindrome(ListNode head) {
if (head == null) return true; // 空链表是回文

ListNode fast = head;
ListNode slow = head;
Deque<Integer> stk = new ArrayDeque<>();

// 快慢指针找中点,栈存前半部分
while (fast != null && fast.next != null) { // 正确的终止条件
stk.push(slow.val); // 存入前半部分元素
slow = slow.next; // 慢指针走一步
fast = fast.next.next; // 快指针走两步
}

// 若链表长度为奇数,慢指针跳过中点(此时fast不为null)
if (fast != null) {
slow = slow.next;
}

// 对比后半部分与栈中元素
while (slow != null) {
if (slow.val != stk.pop()) {
return false;
}
slow = slow.next;
}
return true;
}
}

官方解答

方法一:将值复制到数组中后用双指针法

思路

如果你还不太熟悉链表,下面有关于列表的概要讲述。

有两种常用的列表实现,分别为数组列表和链表。如果我们想在列表中存储值,它们是如何实现的呢?

  • 数组列表底层是使用数组存储值,我们可以通过索引在 O(1) 的时间访问列表任何位置的值,这是由基于内存寻址的方式。
  • 链表存储的是称为节点的对象,每个节点保存一个值和指向下一个节点的指针。访问某个特定索引的节点需要 O(n) 的时间,因为要通过指针获取到下一个位置的节点。

确定数组列表是否回文很简单,我们可以使用双指针法来比较两端的元素,并向中间移动。一个指针从起点向中间移动,另一个指针从终点向中间移动。这需要 O(n) 的时间,因为访问每个元素的时间是 O(1),而有 n 个元素要访问。

然而同样的方法在链表上操作并不简单,因为不论是正向访问还是反向访问都不是 O(1)。而将链表的值复制到数组列表中是 O(n),因此最简单的方法就是将链表的值复制到数组列表中,再使用双指针法判断。

算法

一共为两个步骤:

  1. 复制链表值到数组列表中。
  2. 使用双指针法判断是否为回文。

第一步,我们需要遍历链表将值复制到数组列表中。我们用 currentNode 指向当前节点。每次迭代向数组添加 currentNode.val,并更新 currentNode = currentNode.next,当 currentNode = null 时停止循环。

执行第二步的最佳方法取决于你使用的语言。在 Python 中,很容易构造一个列表的反向副本,也很容易比较两个列表。而在其他语言中,就没有那么简单。因此最好使用双指针法来检查是否为回文。我们在起点放置一个指针,在结尾放置一个指针,每一次迭代判断两个指针指向的元素是否相同,若不同,返回 false;相同则将两个指针向内移动,并继续判断,直到两个指针相遇。

在编码的过程中,注意我们比较的是节点值的大小,而不是节点本身。正确的比较方式是:node_1.val == node_2.val,而 node_1 == node_2 是错误的。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
public boolean isPalindrome(ListNode head) {
List<Integer> vals = new ArrayList<Integer>();

// 将链表的值复制到数组中
ListNode currentNode = head;
while (currentNode != null) {
vals.add(currentNode.val);
currentNode = currentNode.next;
}

// 使用双指针判断是否回文
int front = 0;
int back = vals.size() - 1;
while (front < back) {
if (!vals.get(front).equals(vals.get(back))) {
return false;
}
front++;
back--;
}
return true;
}
}

复杂度分析

  • 时间复杂度:O*(*n),其中n指的是链表的元素个数。

    • 第一步: 遍历链表并将值复制到数组中,O(n)。
  • 第二步:双指针判断是否为回文,执行了 O(n/2) 次的判断,即 O(n)。

    • 总的时间复杂度:O(2n)=O(n)。
  • 空间复杂度:O(n),其中 n 指的是链表的元素个数,我们使用了一个数组列表存放链表的元素值。

方法二:递归

思路

为了想出使用空间复杂度为 O(1) 的算法,你可能想过使用递归来解决,但是这仍然需要 O(n) 的空间复杂度。

递归为我们提供了一种优雅的方式来反向遍历节点。

1
2
3
4
function print_values_in_reverse(ListNode head)
if head is NOT null
print_values_in_reverse(head.next)
print head.val

如果使用递归反向迭代节点,同时使用递归函数外的变量向前迭代,就可以判断链表是否为回文。

算法
currentNode 指针是先到尾节点,由于递归的特性再从后往前进行比较。frontPointer 是递归函数外的指针。若 currentNode.val != frontPointer.val 则返回 false。反之,frontPointer 向前移动并返回 true

算法的正确性在于递归处理节点的顺序是相反的(回顾上面打印的算法),而我们在函数外又记录了一个变量,因此从本质上,我们同时在正向和逆向迭代匹配。

下面的动画展示了算法的工作原理。我们定义递归函数名字为 recursively_check,每个节点都被赋予了标识符(如 $1)以便更好地解释它们。计算机在递归的过程中将使用堆栈的空间,这就是为什么递归并不是 O(1) 的空间复杂度。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
private ListNode frontPointer;

private boolean recursivelyCheck(ListNode currentNode) {
if (currentNode != null) {
if (!recursivelyCheck(currentNode.next)) {
return false;
}
if (currentNode.val != frontPointer.val) {
return false;
}
frontPointer = frontPointer.next;
}
return true;
}

public boolean isPalindrome(ListNode head) {
frontPointer = head;
return recursivelyCheck(head);
}
}

复杂度分析

  • 时间复杂度:O(n),其中 n 指的是链表的大小。
  • 空间复杂度:O(n),其中 n 指的是链表的大小。我们要理解计算机如何运行递归函数,在一个函数中调用一个函数时,计算机需要在进入被调用函数之前跟踪它在当前函数中的位置(以及任何局部变量的值),通过运行时存放在堆栈中来实现(堆栈帧)。在堆栈中存放好了数据后就可以进入被调用的函数。在完成被调用函数之后,他会弹出堆栈顶部元素,以恢复在进行函数调用之前所在的函数。在进行回文检查之前,递归函数将在堆栈中创建 n 个堆栈帧,计算机会逐个弹出进行处理。所以在使用递归时空间复杂度要考虑堆栈的使用情况。

这种方法不仅使用了 O(n) 的空间,且比第一种方法更差,因为在许多语言中,堆栈帧的开销很大(如 Python),并且最大的运行时堆栈深度为 1000(可以增加,但是有可能导致底层解释程序内存出错)。为每个节点创建堆栈帧极大的限制了算法能够处理的最大链表大小。

方法三:快慢指针

思路

避免使用 O(n) 额外空间的方法就是改变输入。

我们可以将链表的后半部分反转(修改链表结构),然后将前半部分和后半部分进行比较。比较完成后我们应该将链表恢复原样。虽然不需要恢复也能通过测试用例,但是使用该函数的人通常不希望链表结构被更改。

该方法虽然可以将空间复杂度降到 O(1),但是在并发环境下,该方法也有缺点。在并发环境下,函数运行时需要锁定其他线程或进程对链表的访问,因为在函数执行过程中链表会被修改。

算法

整个流程可以分为以下五个步骤:

  1. 找到前半部分链表的尾节点。
  2. 反转后半部分链表。
  3. 判断是否回文。
  4. 恢复链表。
  5. 返回结果。

执行步骤一,我们可以计算链表节点的数量,然后遍历链表找到前半部分的尾节点。

我们也可以使用快慢指针在一次遍历中找到:慢指针一次走一步,快指针一次走两步,快慢指针同时出发。当快指针移动到链表的末尾时,慢指针恰好到链表的中间。通过慢指针将链表分为两部分。

若链表有奇数个节点,则中间的节点应该看作是前半部分。

步骤二可以使用「206. 反转链表」问题中的解决方法来反转链表的后半部分。

步骤三比较两个部分的值,当后半部分到达末尾则比较完成,可以忽略计数情况中的中间节点。

步骤四与步骤二使用的函数相同,再反转一次恢复链表本身。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
class Solution {
public boolean isPalindrome(ListNode head) {
if (head == null) {
return true;
}

// 找到前半部分链表的尾节点并反转后半部分链表
ListNode firstHalfEnd = endOfFirstHalf(head);
ListNode secondHalfStart = reverseList(firstHalfEnd.next);

// 判断是否回文
ListNode p1 = head;
ListNode p2 = secondHalfStart;
boolean result = true;
while (result && p2 != null) {
if (p1.val != p2.val) {
result = false;
}
p1 = p1.next;
p2 = p2.next;
}

// 还原链表并返回结果
firstHalfEnd.next = reverseList(secondHalfStart);
return result;
}

private ListNode reverseList(ListNode head) {
ListNode prev = null;
ListNode curr = head;
while (curr != null) {
ListNode nextTemp = curr.next;
curr.next = prev;
prev = curr;
curr = nextTemp;
}
return prev;
}

private ListNode endOfFirstHalf(ListNode head) {
ListNode fast = head;
ListNode slow = head;
while (fast.next != null && fast.next.next != null) {
fast = fast.next.next;
slow = slow.next;
}
return slow;
}
}

复杂度分析

  • 时间复杂度:O(n),其中 n 指的是链表的大小。
  • 空间复杂度:O(1)。我们只会修改原本链表中节点的指向,而在堆栈上的堆栈帧不超过 O(1)。